#!/usr/bin/env python ######################################################### import matplotlib.pyplot as plt # import matplotlib as mpl # import numpy as np # from scipy.interpolate import Rbf # from scipy.optimize import minimize # from math import * # from sys import stdout # from phi_scan import distance, psi_interp1D # ######################################################### # # # this code produces a 2D contour plot and the MEP on # # the PES. # # this code is written for a diatomic molecule thinking # # about the 2D cut of the potential considering the # # interatomic distance (r) and the distance of the # # CoM (Z) from the surface as variables. # # Therefore the data.dat input file must be formatted # # as: r Z E # # You can define the variables related to the plot # # apperance and (more important) to the interpolation # # and the MEP calculation in the VARIABLES section. # # # # Davide Migliorini Leiden, 2015 # # # #-------------------------------------------------------# # A massive update has been implemented including a way # # better fitting procedure to find the MEP and a better # # 2D interpolation function: scipy.interpolate.Rbf # # I am too lazy to proper document all the changes # # however the comments in the code should make it # # (fairly) self-explainatory. # # I hope. # # # # Davide Migliorini Leiden, 2018 # # # #-------------------------------------------------------# # Some changes were implemented to improve the figures, # # too lazy to document. # # # # Nick Gerrits Leiden, 2018 # # # ######################################################### ######################################################### # VARIABLES ############################################# # Title & file name inputs = [ 'energy.dat', 'energy_DFT_elbow.dat' ] titles = [ 'HDNNP', 'DFT' ] references = [ 0., -141.77889 ] # contour line minE = 40. # min and max E shown in the plot maxE = 110. # spacing = 10.0 # E spacing between contour lines # set up plot parameters mpl.rc("text", usetex=True) fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(3.69,2.5)) ######################################################## # Contour plot ######################################### ######################################################## def ReadAndInterpolate(INP, Title, reference, minE, maxE, spacing, plot,bar=False): Z = [] r = [] E = [] lines = open(INP).readlines() for i in range(1, len(lines)): Z.append(float( lines[i].split()[0] )) r.append(float( lines[i].split()[1] )) E.append(float( lines[i].split()[2] )) N = len(lines) r = np.array(r) Z = np.array(Z) E = ( np.array(E) - reference ) * 96.4853075 print( " -----------------------" ) print( " file: ", INP ) print( " title:", Title ) print( " Energy values (min-max):" ) print( " (", min(E), max(E), ") [ eV ]" ) # CONTOUR LINES PLOT ################################### levels = np.arange( minE, maxE , spacing ) #range of energies shown # generate a uniform XY grid density = 100 # number of points per dimention in the denser grid Xnew, Ynew = np.meshgrid( np.linspace( min(r), max(r), density ), np.linspace( min(Z), max(Z), density ) ) # interpolate Z on the XY uniform grid F = Rbf(r, Z, E, function='cubic', smooth=0. ) Znew = F(Xnew, Ynew) # Contour lines ### # plt.subplot(1,2,plot) #areas = plt.contourf(Xnew, Ynew, Znew, levels, zorder=-1, cmap='jet' )# , colors='k' ) # coloured areas if plot == 1: contours = plt.contour( Xnew, Ynew, Znew, levels, colors='r', zorder=0 ) ax.clabel(contours, contours.levels, inline=True, fmt='%3.0f') #contours.collections[2].set_label("HDNNP") else: contours = plt.contour( Xnew, Ynew, Znew, levels, colors='b', zorder=0 ) ax.clabel(contours, contours.levels, inline=True, fmt='%3.0f') #contours.collections[2].set_label("DFT") # plt.scatter(Xnew,Ynew, s=1) # compute Minimum Energy Path MEP = psi_interp1D(r,Z,E,F) MEP_r = [ x[0] for x in MEP ] MEP_Z = [ x[1] for x in MEP ] MEP_E = [ x[2] for x in MEP ] pos_max = np.argmax(MEP_E) if plot == 1: plt.plot(MEP_r, MEP_Z, linestyle='--', linewidth=2, color='r', zorder=1) else: plt.plot(MEP_r, MEP_Z, linestyle='--', linewidth=2, color='b', zorder=1) # plt.scatter(MEP_r, MEP_Z, color = 'white', zorder=1) plt.scatter(MEP_r[pos_max], MEP_Z[pos_max], color = 'black', marker='s', s=35, zorder=2) print( "Minimum Energy Path" ) print( " r [ Ang ] Z [ Ang ] E [ Ang ]" ) for j in range(len(MEP)): print( " %10.6f %10.6f %10.6f " % tuple(MEP[j]) ) # plot appereance ### #plt.colorbar(areas, label='Energy (kJ/mol)') artists, labels = contours.legend_elements() # if plot == 2: # plt.legend(handles=[artists[0]], labels=['DFT']) # else: # plt.legend(handles=[artists[1]], labels=['HDNNP']) #plt.legend() #plt.axis('scaled') plt.xlim(min(r), max(r)) #plt.xlim(1.0,1.8) plt.ylim(min(Z), max(Z)) #plt.ylim(2.0,3.0) plt.ylabel( r'$Z$ (\r{A})' ) plt.xlabel( r'$r$ (\r{A})' ) # plt.title( "%s" % Title ) plt.tick_params(length=6, width=1, direction='in', top=True, right=True) return artists[0] ################################################################### ################################################################### ################################################################### artists = [] artists.append( ReadAndInterpolate(inputs[0], titles[0], references[0], minE, maxE, spacing, 1, True) ) artists.append( ReadAndInterpolate(inputs[1], titles[1], references[1], minE, maxE, spacing, 2, True) ) plt.legend(handles=artists, labels=['HDNNP', 'DFT']) plt.tight_layout() plt.savefig('elbow.pdf') #plt.show()