#!/usr/bin/env python ######################################################### import matplotlib.pyplot as plt # import matplotlib as mpl # import numpy as np # from scipy.interpolate import Rbf # from scipy.optimize import minimize # from math import * # from sys import stdout # from phi_scan import distance, psi_interp1D # ######################################################### # # # this code produces a 2D contour plot and the MEP on # # the PES. # # this code is written for a diatomic molecule thinking # # about the 2D cut of the potential considering the # # interatomic distance (r) and the distance of the # # CoM (Z) from the surface as variables. # # Therefore the data.dat input file must be formatted # # as: r Z E # # You can define the variables related to the plot # # apperance and (more important) to the interpolation # # and the MEP calculation in the VARIABLES section. # # # # Davide Migliorini Leiden, 2015 # # # #-------------------------------------------------------# # A massive update has been implemented including a way # # better fitting procedure to find the MEP and a better # # 2D interpolation function: scipy.interpolate.Rbf # # I am too lazy to proper document all the changes # # however the comments in the code should make it # # (fairly) self-explainatory. # # I hope. # # # # Davide Migliorini Leiden, 2018 # # # #-------------------------------------------------------# # Some changes were implemented to improve the figures, # # too lazy to document. # # # # Nick Gerrits Leiden, 2018 # # # ######################################################### ######################################################### # VARIABLES ############################################# # Title & file name inputs = [ 'energy.dat' ] titles = [ 'Au(111) - HCl - Elbow plot' ] references = [ 1715.14915092 * 96.4853075 ] # contour line minE = 0. # min and max E shown in the plot maxE = 310. # spacing = 10.0 # E spacing between contour lines # set up plot parameters mpl.rc("text", usetex=True) plt.rcParams.update({'font.size': 14}) fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(6.69,4)) ######################################################## # Contour plot ######################################### ######################################################## def ReadAndInterpolate(INP, Title, reference, minE, maxE, spacing, plot,bar=False): Z = [] r = [] E = [] lines = open(INP).readlines() for i in range(1, len(lines)): Z.append(float( lines[i].split()[0] )) r.append(float( lines[i].split()[1] )) E.append(float( lines[i].split()[4] )) N = len(lines) r = np.array(r) Z = np.array(Z) E = np.array(E) * 96.4853075 -reference print( " -----------------------" ) print( " file: ", INP ) print( " title:", Title ) print( " Energy values (min-max):" ) print( " (", min(E), max(E), ") [ eV ]" ) # CONTOUR LINES PLOT ################################### levels = np.arange( minE, maxE , spacing ) #range of energies shown # generate a uniform XY grid density = 100 # number of points per dimention in the denser grid Xnew, Ynew = np.meshgrid( np.linspace( min(r), max(r), density ), np.linspace( min(Z), max(Z), density ) ) # interpolate Z on the XY uniform grid F = Rbf(r, Z, E, function='cubic', smooth=0. ) Znew = F(Xnew, Ynew) # Contour lines ### # plt.subplot(1,2,plot) areas = plt.contourf(Xnew, Ynew, Znew, levels, zorder=-1, cmap='jet' )# , colors='k' ) # coloured areas contours = plt.contour( Xnew, Ynew, Znew, levels, colors='k', zorder=0 ) # black level lines # plt.scatter(Xnew,Ynew, s=1) # compute Minimum Energy Path MEP = psi_interp1D(r,Z,E,F) MEP_r = [ x[0] for x in MEP ] MEP_Z = [ x[1] for x in MEP ] MEP_E = [ x[2] for x in MEP ] pos_max = np.argmax(MEP_E) # plt.plot(MEP_r, MEP_Z, '--', linewidth='4', color = 'white') plt.scatter(MEP_r, MEP_Z, color = 'white', zorder=1) plt.scatter(MEP_r[pos_max], MEP_Z[pos_max], color = 'black', marker='s', s=35, zorder=3) print( "Minimum Energy Path" ) print( " r [ Ang ] Z [ Ang ] E [ Ang ]" ) for j in range(len(MEP)): print( " %10.6f %10.6f %10.6f " % tuple(MEP[j]) ) r_min, r_max = min(r), max(r) Z_min, Z_max = min(Z), max(Z) for phi in np.arange(2., 90., 2.): alpha = np.radians(phi) # interpolation angle m = np.tan(alpha) # slope q = Z_max - m * r_max # intercept # Check boundaries according to phi value ---------------------------------------------- if 0. < phi <= 45.: r_initial = r_min # r and Z range to consider r_final = r_max # for the 1D interpolations Z_initial = m*r_min+q # Z_final = Z_max # elif 45. < phi < 90.: r_initial = float(Z_min - q) / m r_final = r_max Z_initial = Z_min Z_final = Z_max plt.plot( [r_initial, r_final], [Z_initial, Z_final], c='w', linestyle='--' ) # plot appereance ### cbar = plt.colorbar(areas, label='Energy (kJ/mol)') #plt.axis('scaled') plt.xlim(min(r), max(r)) plt.ylim(min(Z), max(Z)) plt.ylabel( r'$Z$ (\r{A})' ) plt.xlabel( r'$r$ (\r{A})' ) # plt.title( "%s" % Title ) plt.tick_params(length=6, width=1, direction='in', top=True, right=True) ################################################################### ################################################################### ################################################################### ReadAndInterpolate(inputs[0], titles[0], references[0], minE, maxE, spacing, 1, True) plt.tight_layout() plt.savefig('TS_elbow_lines.pdf') #plt.show()